Dynamic control of 3D chemical profiles with a single 2D microfluidic platform.

نویسندگان

  • YongTae Kim
  • Sagar D Joshi
  • Lance A Davidson
  • Philip R LeDuc
  • William C Messner
چکیده

Dynamic control of three-dimensional (3D) chemical patterns with both high precision and high speed is important in a range of applications from chemical synthesis, flow cytometry, and multi-scale biological manipulation approaches. A central challenge in controlling 3D chemical patterns is the inability to create rapidly tunable 3D profiles with simple and direct approaches that avoid complicated microfabrication. Here, we present the ability to rapidly and precisely create 3D chemical patterns using a single two-dimensional (2D) microfluidic platform. We are not only able to create these 3D patterns, but can rapidly switch from one mode to another (e.g. from a focused to a defocused pattern in less than 1 second) via simple changes in inlet pressures. A feedback control scheme with a pressure modulation mechanism controls the pressure changes. In addition to experiments, we conducted computational simulations for guiding the optimum design of the channels as well as revealing the sensitivity of the patterns to the channel dimensions; these simulations have high experimental correlations. We also show that microvortices play an important role in creating these tunable 3D patterns in this microfluidic platform. We quantitatively determine the degrees of the focused patterns in 2D cross-sections using a focus index with a 2D Gaussian function. Our integrated approach combining feedback control with simple microfluidics will be useful for researchers in diverse disciplines including chemistry, engineering, physics, and biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External radiotherapy of intact breast: A comparison between 2D (single CT- slice) and 3D (full CT-slices) plans

Background: Tangential irradiation of intact breast is one of the most common procedures performed in any radiotherapy center. This method is performed by using 2D and 3D treatment planning. The aim of this study was to compare 2D with 3D plans in breast conserving radiotherapy. Homogeneity of isodose, and lung received dose were compared. Materials and Methods: Twenty patients with br...

متن کامل

The influence of respiratory motion on dose distribution of 3D-CRT and IMRT- A simulation study

Background: 3DCRT (three-dimensional conformal radiotherapy) and IMRT (intensity-modulated radiotherapy) has provided us with tools to delineate the radiation dose distribution of tumor targets. However, the precision of radiation can be compromised by respiratory motion, which usually limits the geometric and dosimetric accuracy of radiotherapy. The purpose of this study is to evaluate the imp...

متن کامل

Three-dimensional digital microfluidic manipulation of droplets in oil medium

We here develop a three-dimensional DMF (3D DMF) platform with patterned electrodes submerged in an oil medium to provide fundamental solutions to the technical limitations of 2D DMF platforms and water-air systems. 3D droplet manipulation on patterned electrodes is demonstrated by programmably controlling electrical signals. We also demonstrate the formation of precipitates on the 3D DMF platf...

متن کامل

The Comparison 2D and 3D Treatment Planning in Breast Cancer Radiotherapy with Emphasis on Dose Homogeneity and Lung Dose

Introduction: Breast conserving radiotherapy is one of the most common procedures performed in any radiation oncology department. A tangential parallel-opposed pair is usually used for this purpose. This technique is performed using 2D or 3D treatment planning systems. The aim of this study was to compare 2D treatment planning with 3D treatment planning in tangential irradiation in breast conse...

متن کامل

Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip

In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 13  شماره 

صفحات  -

تاریخ انتشار 2011